Network Security: Security, Threats

Tuomas Aura, Microsoft Research, UK

Outline

- 1. Information security, network security
- 2. Basic network threats: sniffing and spoofing
- 3. Cryptography for protocol engineers

Information security, network security

What is security

- When talking about security, we are concerned about bad events caused with malicious intent
 - Security vs. reliability
- Terminology:
 - Threat = bad event that might happen
 - Attack = someone intentionally causes the bad thing to happen
 - Exploit = implementation of an attack
 - Vulnerability = weakness in an information system that enables an attack
 - Risk = probability of an attack × damage in dollars

Areas of IT security

[Gollmann]

- Network security security of communication
 - Focus: data on the wire
 - E.g. encryption to prevent sniffing
- Computer security security of end hosts and client/server systems
 - Focus: access control in operating systems
 - E.g. access control lists for file-systems
- Application security security of services to end users and businesses
 - Focus: application-specific trust relations
 - E.g. secure and legally binding bank transactions

Viewpoints to security

- Cryptography (mathematics)
- Computer security (systems research)
- Network security (computer networking)
- Software security (software engineering)
- Formal methods for security
- Hardware security
- Human aspects of security (usability, sociology)
- Security management (information-systems management, enterprise security)
- Economics of security
- Laws and regulation

Security is a continuous process

- Continuous race between attackers and defenders
 Attackers are creative
- No security mechanisms will stop all attacks; attackers just move to new paths and targets
 - Some types of attacks can be eliminated but others will take their place
 - Compare with crime statistics: Do locks or prison reduce crime in the long term?
- Security mechanisms will fail and new threats will arise
 Contingency planning: how to recover from a breach
- Network security is more straightforward than application security, but difficult enough

Cost vs. benefit

- Rational attackers compare the cost of an attack with the gains from it
 - Attackers look for the weakest link; thus, little is gained by strengthening the already strong bits
- Rational defenders compare the risk of an attack with the cost of implementing defences
 - Lampson: "Perfect security is the enemy of good security"
- But human behavior is not always rational:
 - Attackers follow each other and flock all to the same path
 Defenders buy a peace of mind; avoid personal liability by doing what everyone else does
 - \rightarrow Many events are explained better by group behavior than rational choice

Proactive vs. reactive security

- Technical prevention: design systems to prevent, discourage and mitigate attacks
 - If attack cannot be prevented, increase its cost and control damage
- Detection and reaction: detect attacks and take measures to stop them, or to punish the guilty
- In open networks, attacks happen all the time
 We can detect port scans, spam, phishing etc., yet can do little to stop it or to punish attackers
 - $\textbf{ \rightarrow }$ Technical prevention and mitigation must be the primary defence
- However, detection is needed to monitor the effectiveness of the technical prevention

Network Security Goals

- Confidentiality no sniffing
- Authentication and integrity no spoofing of data or signaling, no man-in-the-middle attacks
- Access control no unauthorized use of network resources
- Availability no denial of service by preventing communication
- Privacy no traffic analysis or location tracking

Authentication and integrity

- Peer-entity authentication = verify that presence and identity of a person, device or service at the time; e.g. car key
- Data origin authentication = verify the source of data
- Data integrity = verify that the data was received in the original form, without malicious modifications
- In practice, data origin authentication and integrity check always go together
- Authentication (usually) requires an entity name or identifier

Who is the attacker?

- We partition the world into good and bad entities
 Honest parties vs. attackers
 - Good ones follow specification, bad ones do not
 - Different partitions lead to different perspectives on the security of the same system
- Typical attackers:
 - Curious or dishonest individuals for personal gain
 - Hackers, crackers, script kiddies for challenge and reputation
 - Companies for business intelligence and marketing
 - Security agencies NSA, FAPSI, GCHQ, DGSE, etc.
 - Military SIGINT strategic and tactical intelligence, cyberwar
 - Organized criminals for money
- Often, not all types of attackers matter
 - E.g. would you care if NSA/university/mom read your email?

Protocol engineering

- Network is a distributed system with many participants
- Computer networking is about protocols
 Protocol = distributed algorithm
 - Algorithm = stepwise instructions to achieve something
- Security is just one requirement for network protocols
 Cost, complexity, performance, deployability, time to market etc. may override perfect security
- Like the design of cryptographic algorithms, security engineering requires experienced experts and peer scrutiny
 - Reuse well-understood solutions; avoid designing your own
- The most difficult part is understanding the problem
 Must understand both security and the application domain
 - Potential solutions often become obvious

Security vs. cryptography

• In the following lectures, we will use cryptography as the main building block for security protocols

However:

"Whoever thinks his problem can be solved using cryptography, doesn't understand the problem and doesn't understand cryptography." attributed to Roger Needham and Butler Lampson

Basic network security threats

Traditional major threats:

- Sniffing = attacker listens to network traffic
- Spoofing = attacker sends unauthentic messages
- Data modification (man in the middle) = attacker intercepts and modifies data
- Corresponding security requirements:
 - Data confidentiality
 - Data-origin authentication and data integrity

Sniffing

• Sniffing = eavesdropping = spying = unauthorized listening = monitoring

Sniffers:

- Packets are often broadcast on a local link
 → all local nodes can listen
- Sniffers listen to packets on the network and pick out interesting details, e.g. passwords
- Hackers install sniffer software on compromised hosts; tools are available for download
- Wireless Ethernet most vulnerable; sniffing on switched LANs and core networks is more difficult but possible
- Network admins and spies can monitor packets on routers, firewalls and proxies
 - Router security may become a serious issues

Spoofing

- Spoofing = sending unauthentic messages
 using false sender address or identifier
- In the Internet, it is easy to send messages that appear to come from someone else
 - A modified version of the application or protocol stack is easy to write
- Examples:
 - Email spoofing: false From field
 - IP spoofing: false source IP address
 - DNS spoofing: false DNS responses
 - Mobile-IP BU spoofing: false location information

Example: email spoofing

• SMTP does nothing to authenticate the sender

> telnet smtp.ntlworld.com 25
220 mta06-svc.ntlworld.com ESMTP server (InterMail vM.4.01.03.27
220 Jack 20 mta06-svc.ntlworld.com ESMTP server (InterMail vM.4.01.03.27
220-121-127-20010626) ready Tue, 11 Mar 2003 20:53:02 +0000
mail from:President spresident@whitehouse.gov>
250 Sender versident@whitehouse.gov>
250 Sender versident@whitehouse.gov>
250 Recipient <tuomaura@microsoft.com>
250 Recipient <tuomaura@microsoft.com>
260 Kender versident@whitehouse.gov>
260 Kender versident@whitehouse.gov>
270 Kender versident@whitehouse.gov>
280 Recipient <tuomaura@microsoft.com>
280 Kender versident@whitehouse.gov>
290 Kender versident@whitehouse.gov>
200 Kender versident@

. 250 Message received: 20030311214331.FQKK2273.mta03svc.ntlworld.com@[80.4.4.33]

guit 221 mta06-svc.ntlworld.com ESMTP server closing connection Connection to host lost.

Example: IP spoofing

- Attacker sends IP packets with false source address.
 Anyone can write software to do this with raw sockets
- The destination node usually believes what it sees in the source address field
- Attacker may be anywhere on the Internet
- Spoofing a connection is more difficult:
 - Attacker must sniff replies from B in order to continue the conversation
 - → Attacker must be on the route between A and B, or control a router on that path

TCP sequence numbers and IP spoofing

- TCP sequence numbers are initialized to random values during the connection handshake
- Acknowledgment number in the third packet must be sequence number of the second packet + 1
- Sequence numbers are incremented for each byte sent. Packets must arrive in order
- Receiver rejects packets with incorrect sequence numbers and waits for the correct ones
- → TCP packets are difficult to spoof because the attacker must sniff or guess the sequence number
- Not cryptographically secure receiver may accept individual spoofed packets if attacker guesses right
- The first packet (SYN) is easy to spoof

Ciphers and modes

- Block ciphers:
 - 3DES in EDE mode: DES_{K3}(DES⁻¹_{K2}(DES_{K1}(M))) 168-bit keys but only 112-bits of security
 AES — 128-bit keys
- For messages longer than one block, a block-cipher mode needed, e.g. CBC
- Random initialization vector (IV) makes ciphertexts different even if the message repeats
- Stream ciphers:
- XOR plaintext and a keyed pseudorandom bit stream
 RC4: simple and fast software implementation
- Always assume that encryption is malleable
 - Attacker can make controlled modifications to the plaintext
 Exception: new AES modes with strong authentication

Key distribution

- Main advantage of public-key protocols is easier key distribution
- Shared keys, symmetric crypto:
 - $O(N^2)$ pairwise keys need for N participants \rightarrow does not scale
 - Keys must be kept secret → hard to distribute
- Public-key protocols, asymmetric crypto:
 - N key pairs needed, one for each participant
 - Keys are public ightarrow can be posted on a bulleting board
- Both kinds of keys must be authentic
 - How does Alice know it shares K_{AB} with Bob, not with Trent?
 - How does Alice know PK_B is Bob's private key, not Trent's?

Formal security definitions

- Cryptographic security definitions for asymmetric encryption
- Semantic security
- Computational security against a ciphertext-only attack
- Ciphertext indistinguishability
 - IND-CPA attacker submits two plaintexts, receives one of them encrypted, and is challenged to guess which it is ⇔ semantic security
 - IND-CCA indistinguishability under chosen ciphertext attack i.e. attacker has access to a decryption oracle before the challenge
 - IND-CCA2 indistinguishability under adaptive chosen ciphertext attack i.e. attacker has access to a decryption oracle before and after the challenge (except to decrypt the challenge)
- Non-malleability
 - Attacker cannot modify ciphertext to produce a related plaintext
 - NM-CPA \Rightarrow IND-CPA; NM-CCA2 \Leftrightarrow IND-CCA2

Cryptographic hash functions

- Message digest, fingerprint
- Hash function: arbitrary-length input, fixed-length
 output
- One-way = pre-image resistant: given only output, impossible to guess input
- Second-pre-image resistant: given one input, impossible to find a second input that produces the same output
- Collision-resistant: impossible to find two inputs that produce the same output
- Examples: MD5, SHA-1, SHA-256
- Notation: h(M), hash(M)

Hash collisions

- 128–160–256-bit hash values to prevent birthday attack
- Recent research has found collisions in standard hash ۵ functions (MD5, SHA-1)
- Currently, any protocol that depends on collisionresistance needs a contingency plan in case collisions are found
- Security proofs for many cryptographic protocols and signature schemes depend on collision resistance because it is part of the standard definition for hash functions
- However, most network-security applications of hash ٥ functions do not really need collision resistance, only second-pre-image resistance

Message authentication code (MAC) Compare Ok? M. MAC_K(N Insecure network Message authentication and integrity protection based on ٥ symmetric cryptography Endpoints share a secret key K MAC appended to the original message M Common implementations: HMAC-SHA1, HMAC-MD5 Notations: $MAC_{\kappa}(M)$, MAC(K;M), $HMAC_{\kappa}(M)$

HMAC

- HMAC is commonly used in standards: • Way of deriving MAC from any cryptographic hash function h $HMAC_{\kappa}(M) = h((K \oplus opad) \parallel h((K \oplus ipad) \parallel M))$
 - Hash function h is instantiated with SHA-1, MD5 etc. to produce
 - HMAC-SHA-1, HMAC-MD5,...
 - ipad and opad are fixed bit patterns
 - Details: [RFC 2104][Bellare, Canetti, Krawczyk Crypto'96] *
- HMAC is theoretically stronger than simpler
- constructions: h(M || K), h(K || M || K)
- HMAC is efficient for long messages; optimized for pre-0 computation
- Discussion: does h need to be collision resistant?

Digital signature (2)

- Examples: DSA, RSA [PKCS#1]
- Public/private key notations: ٥
- $PK = PK_A = K_A = K^+ = K^+_A = e_A$; $PK^{-1} = PK^{-1}_A = K^- = K^-_A = d_A$ Signature notations:
- $S_{A}(M) = Sign_{A}(M) = S(PK^{-1}; M) = PK_{A}(M) = \{M\}_{PK^{-1}}$
- Digital signature with appendix:
 - Signature does not contain the original message M
 - Signatures can be stored separately of M
 - Can append multiple signatures to the same M However, signatures may reveal something of M

 - Historically, there were also signatures with message recovery, in which the signature contains the signed message (e.g., RSA without hashing)
- Discussion: does h need to be collision resistant? ۵

Message size

- Authentication increases the message size:
 - MAC takes 16–32 bytes
 - 1024-bit RSA signature is 128 bytes
- Encryption increases the message size:
 - IV for block cipher takes 8–16 bytes
 - 1024-bit RSA encryption of the session key is 128 bytes
- Overhead of headers, type tags etc.
- Size increase ok for most application-level protocols
 - Signing individual IP packets (1500 bytes) is expensive
 - Signing data on wireless connections may be expensive

The first broken protocol

• What is wrong with this protocol: $A \rightarrow B: M, S_A(M)$ E.g., $S_A($ "Attack now!")

Timestamps (1)

$A \rightarrow B: M, S_{A}(M)$ // $S_{A}("Attack now!")$

- Checking freshness with A's timestamp: $A \rightarrow B: T_A, M, S_A(T_A, M)$
- Fresh = recently sent, or not received before
- Valid = accepted by recipient
 - Timestamp implementations:
 - Sender's real-time clock value (validity ends after fixed period)
 - Validity period start and end (or start and length)
 - Validity period end time
- Notation: T_A

Timestamps (2)

- What problems remain? $A \rightarrow B: T_A, M, S_A(T_A, M)$
 - E.g. S₄("Attack now!")
- Timestamps require clocks at the signer and receiver, and secure clock synchronization
- Secure fine-grained synchronization is hard to achieve, loose synchronization (accuracy from minutes to days) is easier
- Also, fast replays possible: S_A("Transfer £10.")

Using cryptography

- Hashing and signing are generally more useful than encryption
 - When old protocol specs say "encryption", they sometimes mean a MAC, too
- Signing is not encryption with private key!
- Algorithm suites and negotiation
- How many alternatives are needed?
- Cryptography vs. protocol design
- Security protocol designers can treat crypto algorithms as black boxes BUT...
- Algorithm properties are often misunderstood
- Creative use of crypto algorithms is dangerous
 Must follow crypto research to know if the algorithms are still
- secure → Stick to the very basic algorithms and security properties

Arguments for end-to-end Security

- Confidentiality and authenticity are usually user or application requirements
- Link-layer security assumes all routers are trusted
 The end nodes have to be trusted anyway. It is unnecessary to trust intermediaries
- Link-layer security is different for each link type
- End-to-end security is sufficient to provide confidentiality and authentication for applications. Building a secure network is unnecessary
 - Network only needs to protect itself, not the application data

Exercises

- Design a more spoofing-resistant acknowledgement scheme to replace TCP sequence numbers. Hint: use random numbers to ensure that acknowledgements can only be sent by someone who has really seen the packets
- Which applications of hash functions require collision resistance?